Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Stationary states
نویسندگان
چکیده
We model networks of identical, all-to-all pulse-coupled phase oscillators with white noise, in the limit of infinite network size and Dirac pulses, using a Fokker-Planck equation for the phase probability density. We give analytical, constructive existence and uniqueness results for stationary states (i.e. timeindependent densities), and derive and study a one-dimensional eigenvalue equation for their linear stability. Our results are supplemented by numerical methods, which are applied to two classes of oscillator response functions. We find that the stationary network activity depends for some response functions monotonically and for others non-monotonically on the coupling and noise strength. In all cases we find that a sufficiently strong noise locally stabilizes the stationary state, and simulations suggest this stability to be global. For most response functions the stationary state undergoes a supercritical Hopf bifurcation as noise is decreased, and a locally stable limit cycle emerges in its proximity. On that limit cycle, the network splits into groups of approximately synchronized oscillators, while the network’s (mean) activity oscillates at frequencies often much higher than the intrinsic oscillator frequency.
منابع مشابه
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Method for measuring the entanglement of formation for arbitrary - dimensional pure states
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Improved lower and upper bounds for entanglement of formation
متن کامل
Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Immunity space generated by a non trivial genetic - antigenic relation
متن کامل
Discrepancy of Products of Hypergraphs
Discrepancy of Products of Hypergraphs Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, e-mail: [email protected] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, D-04103 Leipzig, e-mail: [email protected] Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Uni...
متن کامل